43,392 research outputs found

    Neutrinoless ββ\beta\beta decay nuclear matrix elements in an isotopic chain

    Full text link
    We analyze nuclear matrix elements (NME) of neutrinoless double beta decay calculated for the Cadmium isotopes. Energy density functional methods including beyond mean field effects such as symmetry restoration and shape mixing are used. Strong shell effects are found associated to the underlying nuclear structure of the initial and final nuclei. Furthermore, we show that NME for two-neutrino double beta decay evaluated in the closure approximation, Mcl2νM^{2\nu}_{\mathrm{cl}}, display a constant proportionality with respect to the Gamow-Teller part of the neutrinoless NME, MGT0νM^{0\nu}_{\mathrm{GT}}. This opens the possibility of determining the MGT0νM^{0\nu}_{\mathrm{GT}} matrix elements from β∓\beta^{\mp} Gamow-Teller strength functions. Finally, the interconnected role of deformation, pairing, configuration mixing and shell effects in the NMEs is discussed

    The band gap problem: the accuracy of the Wien2k code confronted

    Full text link
    This paper is a continuation of our detailed study [Phys. Rev. B 86, 195106 (2012)] of the performance of the recently proposed modified Becke-Jonhson potential (mBJLDA) within the known Wien2k code. From the 41 semiconductors that we have considered in our previous paper to compute the band gap value, we selected 27 for which we found low temperature experimental data in order to pinpoint the relative situation of the newly proposed Wien2k(mBJLDA) method as compared to other methods in the literature. We found that the GWA gives the most accurate predictions. The Wien2k (mBJLDA) code is slightly less precise, in general. The Hybrid functionals are less accurate, on the overall. The GWA is definitely the most precise existing method nowadays. In 88% of the semiconductors considered the error was less than 10%. Both, the GWA and the mBJLDA potential, reproduce the band gap of 15 of the 27 semiconductors considered with a 5% error or less. An extra factor to be taken into account is the computational cost. If one would seek for precision without taking this factor into account, the GWA is the method to use. If one would prefer to sacrifice a little the precision obtained against the savings in computational cost, the empirical mBJLDA potential seems to be the appropriate method. We include a graph that compares directly the performance of the best three methods, according to our analysis, for each of the 27 semiconductors studied. The situation is encouraging but the problem is not yet a closed issue.Comment: 8 pages, 1 figur
    • …
    corecore